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Overview Qutline

Future Greeks by AD in the LSMC Context 2

@ LSMC for V;: regress V; ., onto Ng basis functions ¢(X,, ;)

Vp,i = ]E[V(tH»lv ( I+1))| I] — Vp,i ~ (rb(Xi,p) : ﬂ

Regression coefficients embed 6-dependence: V/(t;, X, ;,0) = #(X, ;) - B(0)

p,io

B = (6(X) ¢(X:)) " o(X)) Vi
@ AD: chain rule on recursion & intermediate sensitivities comp’d at run time
998 = (6(X;)' &(X)) " (X)) 0p Vi
@ Can evaluate full chain in tangent or adjoint mode

Good in theory, but how well does Jy \A/p’,- approximate d,V,, ; in practice?
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Overview Qutline

LSMC Computational Graph

Breakdown of LSMC Dependencies

Figure: The LSMC computational graph with dependencies relevant for AD
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Overview Qutline

CVA Greeks: Usage and Calculation

@ CVA is value of credit risk in derivatives portfolio (or hedging cost)

-
CVA = E, U (V(t)* dt]
0
@ Greeks against quotes, @, eg. swap rates or vols, computed via Jacobians
9oCVA = 9,CVA (9,Q) "
@ 0 is a parameter vector, possibly including initial states, X;, eg. FX spot

@ HW-1F eg. has forward rate & vol knots, 0 = [f;,...,fy,,00,... 0]

o

o There is a formal requirement for 9, V/(t) for callables®

-
aQCVA = EO |:/ 1(V(t)>0) 69 V(t) dt
0

“Nomerix

! Conditioning: Andreasen (14), Indicators: Antonov et al ('16) & Capriotti et al ('16)
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Overview Qutline

MVA: Motivation and Logistics 1

o MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR

T
MVA = E, { / M0 V(1)) dt
0
@ IM is additional collateral to mitigate counterparty risk over MPoR (~ 10D)

o Bilateral IM: both c/parties post to 3rd—party custodians = needs funding

In practice, portfolio hedges attract bilateral & /or clearing-house IM too

® MVA reflects funding costs in valuations = spectre of FVA debate

“Nomerix
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Overview Qutline

Motivation for IM

Exotic: $100M to Client

VM: $100M from Bank

Figure: Exposure, variation margin and initial margin
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Motivation for IM
/w post collateral for day -2
ﬂ post collateral for day -1
/\v disputes collateral for day 0

ﬂ disputes some more
o,

" q notify "potential event of default"
/wv no action after "cure period"
...

day 8
formal "event of default"
o,

®e
0
"early termination date" L/,

Figure: Event sequence during the margin period of risk: a la Andersen et al. ('17)
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Overview

Motivation for IM

Custodian

Initial Margin:
$10M from Bank

Initial Margin:
$11M from Client

Exotic: $100M to Client

VM: $100M from Bank

Figure: Exposure, variation margin and initial margin
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Overview

Funding IM

Custodian

Initial Margin:
$10M from Bank

Initial Margin:
$11M from Client

Exotic: $100M to Client

Client

VM: $100M from Bank

Figure: Exposure, variation margin and initial margin
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Overview Qutline

Full Trade Impact on IM Requirements

Initial Margin

Exotic Swaption

Client

Figure: IM due to client trade and hedge trade/s
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Figure: IM due to client trade and hedge trade/s
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Overview Qutline

MVA: Motivation and Logistics 2

o ISDA proposed a sensitivity-based approximation to 99%-10D VaR for IM

o Sensitivities over eg. swap rates & implied vols, Q =[Sy, ..., Sy, v, -+, vy, ]
IMpeita = \/ 05V L sV

@ Typical to use Jacobians to obtain Q-sensitivities from f#-sensitivities

@ This just translates risk over f;,0q,... to risk over S;, v, ...

oV =9V (0,Q) "

What if Ny # No? Ny < Ng — pseudo-inverse, Ny > Ng — bucketing

The Ny > N case will enforced by model design and bucketing will be used®

2Could also use sophisticated shape-weighted bucketing, risk curves, etc.
3Fries ('18) may have an alternative for this

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 8/13
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Overview Qutline

Bucketing

Model Yield Knot Tenors

Risk Factor Tenors

Figure: Bucketing to ensure invertible Jacocbians
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Bucketing

Model Yield Knot Tenors: Start

Model Yield Knot Tenors: After 1Y

Risk Factor Tenors: All Dates

Figure: Bucketing to ensure invertible future Jacocbians
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Bucketing
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Overview Qutline

Presentation Qutline

@ CVA Greeks and MVA via “Future” Greeks
@ Future Greeks as a by-product of AD-on-LSMC

@ AD efficiencies for LSMC: large-sample regression coefficient dependencies
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Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

N

Voi = 0(X,) B
B o= (0(X)¢(X)o(X) Vi
@ Can establish MSE of LSMC error in \A/p,,-

MSE(V,,|X;) = E[(V

i = Vo)X

= ¢(X,,) var( B IX))d(X5.1) + (Vpi — o(Xo,i) - Bao)?
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?
@ What about the variance of 9, \7,+1? Need larger Np?

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

N

Voi = 0(X,) B
b= (o(X) e(X)) " 6(X) Via
@ Can establish MSE of LSMC error in \A/p,,-
MSE(V, 1X) = E[(V,,; - V,,)’IX]
= ¢(X,;) var( B IX))p(Xp,i) + (Vp,i — &(Xp,) - Bao)?
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?
@ What about the variance of 9, \7,+1? Need larger Np?

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

N

Voi = (X)) B
B = (6(X)d(X) (X)) Vipa

@ Can establish MSE of LSMC error in \A/p,,-

MSE(Vp,i|Xi) = E[((Vp.i = (b(Xp,i) ’ ﬁoo) - (Vp,i - G'J)(pri) : 39@))2|Xi]
= (b(Xp,i)lvar( B |Xi)¢(Xp,i) + (Vp,i - ¢(Xp,i) . 600)2
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?

@ What about the variance of 9, \7,+1? Need larger Np?

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

N

Voi = (X)) B
B = (6(X)d(X) (X)) Vipa

@ Can establish MSE of LSMC error in \A/p,,-

MSE(V,;1X:) = E[((Vo; — &(Xp.) - Boo) = (Vi — 0(X,p1) - Boo))1Xi]

¢(Xp,i)/var( 3\ ‘XI)O(XPI) + (Vp,i - @(Xp.i) : 60@)2

Q

@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?

@ What about the variance of 9, \7,+1? Need larger Np?

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

N

Voi = (X)) B
B = (6(X)d(X) (X)) Vipa

@ Can establish MSE of LSMC error in \A/p,,-

A

MSE(V,;1X:) = El((Vp; = &(Xp)  Boc) = (Vpi = &(Xp,i) - Buo))’|Xi]
= (b(Xp,i)lvar( B |Xi)¢(Xp,i) + (Vp,i - ¢(Xp,i) . 600)2
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?

@ What about the variance of 9, \7,+1? Need larger Np?

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

0pVpi = &(Xip)-0pB
DB = (B(X) 6(X))) 1 B(X) 0y Via
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yVp,1) = El(9Vp,i = &(X5,1) - Do) = (05 Vi = (Xp,1) + Doc))’]
= ¢(X,,;) var( 9p3 )O(Xp,1) + (09 Vi — &( X, 1) - 9pBos)’
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?
@ What about the variance of 9, \7,+1? Need larger Np?

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

0pVpi = &(Xip)- 0B
9B = (&(X) 6(X))) 1 B(X) Oy Via
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= $(X,,1)Var(9p83)$(Xp.1) + (99 Vi — H(X1) - DpBoc)?
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?
@ What about the variance of 9, \7,+1? Need larger Np?

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

0pVpi = &(Xip)- 0B
9B = (&(X) 6(X))) 1 B(X) Oy Via
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= ¢(X,,;) var( 893 YO(Xo,i) + (0pVyi — O(Xo,i) - 9pBs)’
@ Is the basis good for 0, \A/,-H? How does the bias react? Need more flexibility?
@ What about the variance of 9, \7,+1? Need larger Np?

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

0pVpi = &(Xip)- 0B
9B = (&(X) 6(X))) 1 B(X) Oy Via
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= @(Xp,i)/Var( 893 JO(Xpi) + (0p Vi — D(Xp,i) - 99Bss)’
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?
@ What about the variance of dyV;.,? Need larger Np?

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)

0pVpi = &(Xip)- 0B
0B = ((X) $(X) T B(X:) 9p Vi
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= @(Xp,i)/Var( 893 JO(Xpi) + (0p Vi — D(Xp,i) - 99Bss)’
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?
@ What about the variance of dyV;.,? Need larger Np?

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)
Vi = &(Xip) 0P
0e = (6(X) D(X) " b(X;) var(g ;1) d(X:) (6(X) (X))
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= @(Xp,i)/Var( 893 JO(Xpi) + (0p Vi — D(Xp,i) - 99Bss)’
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?

@ What about the variance of dyV;.,? Need larger Np?

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

A~

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)
Vi = &(Xip) 0P
QB = (S(X) B(X0)) ™ $(X)) var(9p Vit Jo(X) (&(X) (X)) ™
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= @(Xp,i)/Var( 893 JO(Xpi) + (0p Vi — D(Xp,i) - 99Bss)’
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?

@ What about the variance of dyV;.,? Need larger Np?

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

A~

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)
Vi = &(Xip) 0P
%ff = (#(X) B(X)) " $(X)) var(9, Vi1 )e(X)(6(X) ¢(X)))
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= @(Xp,i)/Var( 893 JO(Xpi) + (0p Vi — D(Xp,i) - 99Bss)’
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?

@ What about the variance of dyV;.,? Need larger Np?

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

Accuracy of Future Greeks from LSMC 1

@ Our V; come from regressing \A/,-H onto Npg basis functions ¢(X;)
Vi = &(Xip) 0B
% = (6(X) $(X)) T H(X)) var(- - dW () B(X)(@(X) 6(X)
@ Can establish MSE of LSMC error in \A/p,,-
MSE(0yV,,1) = El(BVp,i = &(X5,1) - Qo) = (96 Vi = &(Xp,1) - 0ac))’]
= @(Xp,i)/Var( 893 JO(Xpi) + (0p Vi — D(Xp,i) - 99Bss)’
@ Is the basis good for 0, \7;+1? How does the bias react? Need more flexibility?

@ What about the variance of dyV;.,? Need larger Np?

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline

AD-on-LSMC Accuracy

Future Value

0.5 , , , ,
eee AD-on-LSMC
eees BF
0.4} .
L]
0.3}
[ ]
(]
] .
2 02} .
2 .
N
01| \\
0.0} ..-".. o000
_01 L L L L L L
—0.08 —0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

Short Rate

Figure: AD-on-LSMC Values vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

“NUmerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



AD-on-LSMC Accuracy

2 Future Delta

eee AD-on-LSMC

Of{eee BF o0

Delta
“

=10}

=12}

—14 | .

_16 L L L L L L
-0.08 —0.06 —-0.04 -0.02 0.00 0.02 0.04 0.06

Short Rate

Figure: AD-on-LSMC Deltas vs. Brute-Force: 10-into-16 Bermudan at 5Y Observation

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 9/13



Overview Qutline
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Overview Qutline

Accuracy of Future Greeks from LSMC 2

@ Many engineering techniques available to improve LSMC accuracy
© Craft basis on a trade-by-trade basis and incorporate functions of ¢
V(X,,,0) = By + B V" (X, 1, 0) 4+ Ba V(X 1, 0) w(X,, 1, 0) + - -

@ Use control variates to reduce variance in Vj,

Vp,i+1 = ¢(Xp,i) : 6 + €p,i

© Assess impact of using Vi vs. Ciiy y, as regressands: bias vs. variance

@ As for LSMC exposures, need engineering & validation in complex cases
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Overview Qutline

Alternative to AD-on-LSMC: Direct Greek Regression

High-dimensional models, path-dependent products, complex payoffs etc.

@ Can expect performance of LSMC Greeks to suffer, need alternative

Can regress Jy C;yq n, directly onto dedicated basis, ¢y (X;,0)
39n Vp,,' = E[agn Ci+1|Xp,i} — 89n Vp,i = ¢0n(Xi’ 9) . ’,}\/gn
@ Main benefit is that basis only has to tailor to dy V;, not V; & 9yV;

Expensive: /3 differentiated N, times is cheaper than 4, computing N, times

@ Can mix-&-match, using AD-on-LSMC for all but difficult members of 6
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Overview Qutline

Presentation Qutline

@ CVA Greeks and MVA via “Future” Greeks
@ Future Greeks as a by-product of AD-on-LSMC

@ AD efficiencies for LSMC: large-sample regression coefficient dependencies
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Overview Qutline

Coefficient Behavior and Dependencies in Large Samples

@ Dependence upon 6 gets propagated through the regression matrix
0pB; = (6(X:) ¢(X:)) " D(X;) 0 Vi
o Large-sample: ignore X;-dependence in 3, & thus 6-dependence in X;

lim Ox 305X = lim O ((6(X)) $(X) " 6(X;) Viya) 95X = 0
Np—oco Np—oo 7
@ Propagating through 5)(,-3 is as expensive as the main propagation of 9y \A/,-H

o Differentiating noise, ax,-B = Ox.(Boo — (B—By)) = 8X,,(3 — Boo)) = Ox.€

Still important in presence of outliers/overfit, eg. in small samples
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Coefficient Behavior and Dependencies in Large Samples
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Overview Qutline

AD-on-LSMC Accuracy: Large-Sample Propagation
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Overview Qutline

AD-on-LSMC Accuracy: Large-Sample Propagation
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Overview Qutline

AD-on-LSMC: Propagation Mode

@ AD evaluates chain rule in either tangent (forward) or adjoint (reverse) modes
@ Tangent costs (=) O(N,,;) while adjoint costs (=) O(N,,)
CVA: Ny, =Ny & Nyye =1 = adjoint
MVA : N;,, = Ny & N,yes = Ny - Np = tangent

@ MVA is not a Greek: Greeks over all exposures, 0y \7p7,-, are inputs

“Nomerix
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Overview Qutline

Future Greeks for CVA Greeks and MVA (Appendix)

@ Mild difference between future Greeks for CVA, and future Greeks for MVA

@ Future Greeks for CVA include trajectory: requires additional propagation

-
(99CVA =Eg |:/0 1(V(t)>0) (93 V(t) dt:|

@ Future Greeks for MVA are along a fixed trajectory: no additional propagation

MVA = E, [/OTIM(GQV(t))dt}
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Future Greeks for CVA Greeks and MVA

@ Mild difference between future Greeks for CVA, and future Greeks for MVA

@ Future Greeks for CVA include trajectory: requires additional propagation

)
VA = B [ 140100 00V (2) + 9 V(O) - 9X(0)

@ Future Greeks for MVA are along a fixed trajectory: no additional propagation

MVA = E, [/OT IM(0, V/(£, X(,6). 6) () dt}

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 13/13



Overview Qutline

Future Greeks for CVA Greeks and MVA

@ Mild difference between future Greeks for CVA, and future Greeks for MVA

@ Future Greeks for CVA include trajectory: requires additional propagation

)
VA = B [ 140100 00V (2) + 9 V(O) - 9X(0)

@ Future Greeks for MVA are along a fixed trajectory: no additional propagation

MVA = E, [/OTIM(()QV(t))dt}

“Nomerix

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 13/13



Overview Qutline

MVA: Motivation and Logistics 1 (Appendix)

@ MVA is lifetime funding cost of IM, and IM is sensitivity-based VaR*

MVA = E, MT IM(Dg(e) V(2)) dt}

IM is additional collateral to mitigate counterparty risk over MPoR (~ 10D)

Bilateral IM: both c/parties post to 3'd—party custodians = needs funding

In practice, portfolio hedges attract bilateral & /or clearing-house IM too

MVA reflects funding costs in valuations = spectre of FVA debate

“Nomerix

*See Green and Kenyon ('15) for detailed derivation

A. McClelland with A. Antonov and S. Issakov AD-on-LSMC for MVA and CVA Greeks 13/13



Overview Qutline

Swap IM Projections
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Figure: Delta-IM for a vanilla swap: just applying SIMM rule, not CCH rule
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Overview Qutline

Bermudan IM Projections
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Figure: Delta-IM for a Bermudan
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